
gem install rails -v 5.2.4

When you install the Rails framework, you also get a new command-line tool, rails ,
that's used to construct each new Rails application you write. It is installed along with the
rails gem.

We're going to run that executable now to generate our app.

 rails new Proverbs

This:

1. creates a new directory with the same name as the app, containing a whole bunch of
files and directories inside it

2. downloads and installs some additional gems using the ruby gem manager "Bundler"
(Gem Bundler helps you track and install the gems you need for your any Ruby project).
By default some gems are added for you to work with. Gems are like Ruby libraries with
some functionality, installed to satisfy specific needs.

Our Proverbs app is already set up to run and display a generic welcome page.

To test it, change into the new app directory (Proverbs) then type:

 cd Proverbs
 rails server
 #or
 rails s

This:

1. boots Puma, the web server that Rails 5 runs on top of.
2. starts our Rails 5.2.4.4 application (in development) on localhost port 3000

The important part, there is the URL at the end; localhost:3000 is the address where

Proverbs: My first app with Rails

Install rails 5.2

the server is running. Localhost means it is on the local machine, your own computer. 3000
is the port it is running on. Multiple servers can run on the same computer as long as they
take different connections on different ports. A rails application that is in development takes
connections on port 3000, by default.

To check what is running on the port 3000, before running any rails app:

 lsof -i:3000

This will list any process listening to the port 3000.

To kill any process listening to this port using its PID:

 kill -9 PID

When we copy the localhost:3000 URL and paste it into our web browser, Rails will
respond with the following welcome page. Our app is already running.

Now that we know the server works, let's shut it back down for the time being. When Rails
started, it also printed one other message, Use Ctrl-C to stop the server. Those are
the keys to press when you want to shut down the web server. So return to your terminal
window and press Ctrl+C to stop the server.

When you use the rails to create your application, it creates the entire directory structure for
the application. Rails knows where to find things it needs within this structure, so you don't
have to provide any input.

Here is a top-level view of a directory tree created at the time of application creation. Except

Rails directory structure

for minor changes between releases, every Rails project will have the same structure, with
the same naming conventions. This consistency gives you a tremendous advantage; you
can quickly move between Rails projects without relearning the project's organization.

To understand this directory structure, let's use the Proverbs application created above using
the simple rails new Proverbs command.

Now, if we check the Proverbs application root directory, we will find a directory structure as
shown in the figure below.

Now let's explain the purpose of each directory

app − It organizes your application components. It's got subdirectories that hold the
view (views and helpers), controller (controllers), and the backend business logic

(models).

app/controllers − The controllers subdirectory is where Rails looks to find the
controller classes.

- app/assets - This directory holds an application's stylesheet files (i.e., css) within a
subdirectory.

app/helpers − The helpers subdirectory holds any helper classes used to assist
the model, view, and controller classes. This helps to keep the model, view, and
controller code small, focused, and uncluttered.

app/models − The models subdirectory holds the classes that model and wrap the
data stored in our application's database. In most frameworks, this part of the
application can grow pretty messy, tedious, verbose, and error-prone. Rails makes it
very simple!

app/view − The views subdirectory holds the display templates to fill in with data
from our application, convert to HTML, and return to the user's browser.

app/view/layouts − Holds the template files for layouts to be used with views.
This models the common header/footer method of wrapping views.

components − This directory holds components, tiny self-contained applications that
bundle model, view, and controller.

config − This directory contains the small amount of configuration code that your
application will need, including your database configuration (in database.yml), your
Rails environment structure (environment.rb), and routing of incoming web requests
(routes.rb). You can also tailor the behavior of the three Rails environments for test,
development, and deployment with files found in the environments directory.

db − Usually, your Rails application will have model objects that access relational
database tables. You can manage the relational database with scripts you create and
place in this directory. This is the parent directory for migration files.

doc − Ruby has a framework, called RubyDoc, that can automatically generate
documentation for code you create. You can assist RubyDoc with comments in your
code. This directory holds all the RubyDoc-generated Rails and application
documentation.

lib − You'll put libraries here, unless they explicitly belong elsewhere (such as
vendor libraries).

log − Error logs go here. Rails creates scripts that help you manage various error

logs. You'll find separate logs for the server (server.log) and each Rails environment
(development.log, test.log, and production.log).

public − Like the public directory for a web server, this directory has web files that
don't change, such as JavaScript files (public/javascripts), graphics (public/images),
stylesheets (public/stylesheets), and HTML files (public).

script − This directory holds scripts to launch and manage the various tools that
you'll use with Rails. For example, there are scripts to generate code (generate) and
launch the web server (server).

test − The tests you write and those that Rails creates for you, all goes here. You'll
see a subdirectory for mocks (mocks), unit tests (unit), fixtures (fixtures), and functional
tests (functional).

tmp − Rails uses this directory to hold temporary files for intermediate processing.

vendor − Libraries provided by third-party vendors (such as security libraries or
database utilities beyond the basic Rails distribution) go here.

Apart from these directories, there will be several files available in the Proverbs directory:

Rakefile − This file is similar to Unix Makefile, which helps with building, packaging
and testing the Rails code.
Gemfile - This file includes a list of all gems that you want to include in the project.

That welcome page is cool, but it's time to create some pages that are specific to our
proverbs app. And we're going to do it using JUST TWO terminal commands. You're about
to witness the power of convention over configuration.

We will first start by creating a Rails resource.

A rails "resource" is a type of object that you want users to be able to:

create instances of
read data for
update data for, and
delete instances of when they don't want them anymore.

These are the famous CRUD operations.

One of the most important resource for our Proverbs app is the: Proverb We need to be able
to create new proverb, read existing proverb data like the english quotes and their

Creating our first resource

translations, update or change that data, and delete proverbs when needed.

A proverb is defined using the following attributs: english, translation and active. Rails
implements the MVC design pattern and uses the three main components model, view and
controller to perform these CRUD operations.

It is very common to create each component separately, as we usually like to have extra
control over the model, view and controller we create. But, for now we will cheat a bit and
create all three at once using a Rails scaffold.

rails scaffold is the Rails generator that lets you create a model, view, and controller for a
resource simultaneously.

So let's create our first scaffold now. In your terminal, check to make sure you're at your
command prompt and make sure there is no rails server running and then type the following:

rails generate scaffold Proverb english:string translation:string acti
ve:boolean

rails rails is the command we are running here
generate subcommand will generate some source code files for us. (remember we

ran the server subcommand earlier)
scaffold is the type of code we want to generate.
Proverb is the model we want to create a scaffold for.
english:string translation:string active:boolean : attributes

describing the object Proverb. To create the right type of database field, we need to
specify the type of data the attribute will hold. This could be a string, an integer, a date,
or any type of value the database supports.

After this, we'll be able to create Ruby objects with a class of Proverb, save them to the
database and load them in again and display them in our browser.

This command creates a whole bunch of files for you. Among these file, a migration file is
created. It has a specific name and stored under db/migrate in the rails folder tree:

db/migrate/today's date_create_proverb.rb

This migration file is responsible for creating the proverb table in the database, in which we
will store all the proverbs data that will be collected through the system via the creation of
Proverb objects.

But that table hasn't been created yet.

We first runing rails server , then reload the browser, an error is thrown

This is the ActiveRecord::PendingMigrationError error.

To fix this, we need to run the migration to create the table here on our development system,
and it'll be run again later on your production system to create the same table there.

rails db:migrate

This is what we get.

20200205082634 CreateProverbs: migrating
===================================== -- create_table(:proverbs)

-> 0.0012s

== 20200205082634 CreateProverbs: migrated (0.0013s) ===========

The CreateProverbs: migrating shows that the migration is running.
Below, you will see create_table(:proverbs) , and that's the table being
created.

Using

The proverbs table has an automatically generated id column that's used to look records up,
in addition to the ones we specified in the migration.

Migrations for new tables have a call to the timestamps method by default, which sets
up the created_at and updated_at columns, which store the date and time a record was
created or updated.

Now, if we reload the page, we will get the home page shown successfully. But this only the
welcome page, common to all applications. But, we would like to see our proverb

resource we just created.

In order to access the owner resource, we need to specify a path to the resource. we will add
/proverbs to the end of the URL.

To check the list of possible paths, we check the routes file using

rails routes

All the routes created in the application will be displayed.

So, the question is: How are all these details displayed.

Rails receives a get request for the proverbs path. This request is sent to the
index method in the ProverbController class.

I want to get a list of the proverbs: I pass it this URL
http://localhost:3000/proverbs and I get a list of the proverbs, as you can see.

The dsipatcher calls the ProverbsController and asks it to execute the action index , after
looking at the routing table that basically maps the HTTP Verb and the URI pattern into a
controller#action combination.

So If I want to get all the proverbs, all I need to do is to pass a GET HTTP Verb and pass
the pattern proverbs in the URL. This tells the dispatcher that the request should go to
this controller/action combination: proverbs#index.

in the controller
def index
 @proverbs=Proverb.all
end

In the index action: @proverbs : is the instance variable, this bucket or container in which
I will store this data in.

And here the Controller is asking the Proverb model to run this all method: Proverb.all.

THE MODEL: Models are always upper case and singular, and our controllers will be in
plural and upper case So Proverb is a model, we will go to the Proverb model and run the
all Ruby method.

NOW BEFORE GOING TO THE MODEL PROVERB: RUN rails console . The
console command lets you interact with your Rails application from the command line. On
the underside, bin/rails console uses IRB, so if you've ever used it, you'll be right at home.
This is useful for testing out quick ideas with code and changing data server-side without
touching the website.

rails console

And type in Proverb.all

One thing I would like you to notice, that each time I do Proverb.all , it generates some
SQL.

Also, you can test the following:

Proverb.first
Proverb.last
Proverb.find(5)
p= Proverb.first
p.active=false
p.save

